

Innovative Approaches to Energy Efficiency

4th Annual ESC Market Transformation Conference

Presented by: Wayne Leahy, Joe Christie

September 1, 2015

Comprehensive Whole Building Approach

Innovative Energy Conservation Measures

- Appalachian State University
 - Advanced Demand Control Ventilation
- Horry County Government
 - Ozone Laundry System
- Florence County Government
 - Chiller Plant Optimization

Advanced Demand Control Ventilation – ASU

- Adjusts outside air based on occupancy ventilation demands
 - High Energy Savings Potential
- Typical Methods
 - Occupancy sensors
 - Time scheduled
 - Occupant count
 - CO₂ sensors
 - Most accurate
 - Highest savings
 - Higher cost
 - Possible Calibration issues

Advanced Demand Control Ventilation – ASU

- High Savings Opportunity Laboratories
 - 100% OA; 8 10 air changes/hour
- Three Buildings at App State
 - Aircuity® DCV
 - Air samples from each zone routed to a single sensor
 - Improved accuracy
 - Lower LCC
- Annual Energy Savings
 - \$524,000

Single Sensor Suite

Ozone Laundry – Horry County

- Proven Technology
 - O₃ bonds to carbon based dirt/soil
- Detention Center Laundry
 - Five washing machines, 260 day/year, 3,300 lbs/day
- Scope of work
 - 2 ozone generators, tubing, circuitry, sensors, controls
 - Reprogram washers & operator training
- Benefits
 - Reduced potable water & sewer use
 - Reduced natural gas cost
 - Reduced laundry detergent
 - Increased sanitation
 - Reduced chemical discharge

Ozone Generator

Ozone Injection Tubing

Chiller Plant Optimization – Florence County

Basic Concept

- Non-proprietary system algorithm utilizes optimizing modeling approach
 - Constant repetitive mathematics determine the most efficient equipment sequence and settings
 - Compressor mapping, pump curves and tower profile are key elements to the optimized algorithm
- System fully directs the plant control system (PCS)
 - Commands chillers, condenser water pumps, secondary pumps and cooling towers fans to run at the <u>lowest possible system kw/ton</u>
- Offline equipment is excluded from the calculation
 - Optimizes regardless of available equipment
- Respects customer requirements and equipment limitations
 - Customer sacrifices are not made at the expense of forcing efficiency

Chiller Plant Optimization – Florence County

- Current Situation
 - Two Smardt Chillers
 - Staged dependent on OAT
 - Conventional Prim/Sec CHW Loop
 - Primary pumps constant flow
 - Secondary pumps VFD's (disconnected)
 - Carrier Comfort Controller 6400 system
 - Controls the pumps, cooling tower, and valves and provides start/stop command to the chiller. No trending capability
- Pepco Energy Solution
 - Central Plant Energy Control System by Armstrong
 - Four new VFDs
 - Remote pressure differential sensor controls flow
 - Operate plant to achieve <u>lowest possible kw/Ton</u>

Questions & Contact Information

Wayne Leahy
Client Manager
Regional Markets
Pepco Energy Services
609-221-1291
wleahy@pepcoenergy.com

Joe Christie

Business Development Manager

Southeast Region

Pepco Energy Services

919-619-2786

jchristie@pepcoenergy.com